Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Res Notes ; 17(1): 61, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433213

RESUMO

OBJECTIVE: The neural correlates of creativity are not well understood. Using an improvised guitar task, we investigated the role of Broca's area during spontaneous creativity, regardless of individual skills, experience, or subjective feelings. RESULTS: Twenty guitarists performed improvised and formulaic blues rock sequences while hemodynamic responses were recorded using functional near-infrared spectroscopy. We identified a new significant response in Broca's area (Brodmann area [BA] 45L) and its right hemisphere homologue during improvised playing but not during formulaic playing. Our results indicate that bilateral BA45 activity is common during creative processes that involve improvisation across all participants, regardless of subjective feelings, skill, age, difficulty, history, or amount of practice. While our previous results demonstrated that the modulation of the neural network according to the subjectively experienced level of creativity relied on the degree of deactivation in BA46L, our current results independently show a common concurrent activity in BA45 in all participants. We suggest that this is related to the sustained execution of improvisation in "motor control," analogous to motor planning in speech control.


Assuntos
Área de Broca , Música , Humanos , Emoções , Redes Neurais de Computação
2.
Sci Rep ; 14(1): 3232, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332184

RESUMO

Social difficulties during interactions with others are central to autism spectrum disorder (ASD). Understanding the links between these social difficulties and their underlying neural processes is a primary aim focused on improved diagnosis and treatment. In keeping with this goal, we have developed a multivariate classification method based on neural data acquired by functional near infrared spectroscopy, fNIRS, during live eye-to-eye contact with adults who were either typically developed (TD) or individuals with ASD. The ASD diagnosis was based on the gold-standard Autism Diagnostic Observation Schedule (ADOS) which also provides an index of symptom severity. Using a nested cross-validation method, a support vector machine (SVM) was trained to discriminate between ASD and TD groups based on the neural responses during eye-to-eye contact. ADOS scores were not applied in the classification training. To test the hypothesis that SVM identifies neural activity patterns related to one of the neural mechanisms underlying the behavioral symptoms of ASD, we determined the correlation coefficient between the SVM scores and the individual ADOS scores. Consistent with the hypothesis, the correlation between observed and predicted ADOS scores was 0.72 (p < 0.002). Findings suggest that multivariate classification methods combined with the live interaction paradigm of eye-to-eye contact provide a promising approach to link neural processes and social difficulties in individuals with ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Humanos , Transtorno do Espectro Autista/diagnóstico , Máquina de Vetores de Suporte , Transtorno Autístico/diagnóstico , Comunicação não Verbal , Motivação
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1875): 20210472, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36871593

RESUMO

Viewing a live facial expression typically elicits a similar expression by the observer (facial mimicry) that is associated with a concordant emotional experience (emotional contagion). The model of embodied emotion proposes that emotional contagion and facial mimicry are functionally linked although the neural underpinnings are not known. To address this knowledge gap, we employed a live two-person paradigm (n = 20 dyads) using functional near-infrared spectroscopy during live emotive face-processing while also measuring eye-tracking, facial classifications and ratings of emotion. One dyadic partner, 'Movie Watcher', was instructed to emote natural facial expressions while viewing evocative short movie clips. The other dyadic partner, 'Face Watcher', viewed the Movie Watcher's face. Task and rest blocks were implemented by timed epochs of clear and opaque glass that separated partners. Dyadic roles were alternated during the experiment. Mean cross-partner correlations of facial expressions (r = 0.36 ± 0.11 s.e.m.) and mean cross-partner affect ratings (r = 0.67 ± 0.04) were consistent with facial mimicry and emotional contagion, respectively. Neural correlates of emotional contagion based on covariates of partner affect ratings included angular and supramarginal gyri, whereas neural correlates of the live facial action units included motor cortex and ventral face-processing areas. Findings suggest distinct neural components for facial mimicry and emotional contagion. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.


Assuntos
Expressão Facial , Córtex Motor , Humanos , Emoções , Conhecimento , Lobo Parietal
4.
PLoS One ; 17(11): e0265798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350848

RESUMO

Reluctance to make eye contact during natural interactions is a central diagnostic criterion for autism spectrum disorder (ASD). However, the underlying neural correlates for eye contacts in ASD are unknown, and diagnostic biomarkers are active areas of investigation. Here, neuroimaging, eye-tracking, and pupillometry data were acquired simultaneously using two-person functional near-infrared spectroscopy (fNIRS) during live "in-person" eye-to-eye contact and eye-gaze at a video face for typically-developed (TD) and participants with ASD to identify the neural correlates of live eye-to-eye contact in both groups. Comparisons between ASD and TD showed decreased right dorsal-parietal activity and increased right ventral temporal-parietal activity for ASD during live eye-to-eye contact (p≤0.05, FDR-corrected) and reduced cross-brain coherence consistent with atypical neural systems for live eye contact. Hypoactivity of right dorsal-parietal regions during eye contact in ASD was further associated with gold standard measures of social performance by the correlation of neural responses and individual measures of: ADOS-2, Autism Diagnostic Observation Schedule, 2nd Edition (r = -0.76, -0.92 and -0.77); and SRS-2, Social Responsiveness Scale, Second Edition (r = -0.58). The findings indicate that as categorized social ability decreases, neural responses to real eye-contact in the right dorsal parietal region also decrease consistent with a neural correlate for social characteristics in ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Fixação Ocular , Lobo Parietal
5.
Neurobiol Lang (Camb) ; 3(3): 469-494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37216062

RESUMO

People who stutter learn to anticipate many of their overt stuttering events. Despite the critical role of anticipation, particularly how responses to anticipation shape stuttering behaviors, the neural bases associated with anticipation are unknown. We used a novel approach to identify anticipated and unanticipated words, which were produced by 22 adult stutterers in a delayed-response task while hemodynamic activity was measured using functional near infrared spectroscopy (fNIRS). Twenty-two control participants were included such that each individualized set of anticipated and unanticipated words was produced by one stutterer and one control participant. We conducted an analysis on the right dorsolateral prefrontal cortex (R-DLPFC) based on converging lines of evidence from the stuttering and cognitive control literatures. We also assessed connectivity between the R-DLPFC and right supramarginal gyrus (R-SMG), two key nodes of the frontoparietal network (FPN), to assess the role of cognitive control, and particularly error-likelihood monitoring, in stuttering anticipation. All analyses focused on the five-second anticipation phase preceding the go signal to produce speech. The results indicate that anticipated words are associated with elevated activation in the R-DLPFC, and that compared to non-stutterers, stutterers exhibit greater activity in the R-DLPFC, irrespective of anticipation. Further, anticipated words are associated with reduced connectivity between the R-DLPFC and R-SMG. These findings highlight the potential roles of the R-DLPFC and the greater FPN as a neural substrate of stuttering anticipation. The results also support previous accounts of error-likelihood monitoring and action-stopping in stuttering anticipation. Overall, this work offers numerous directions for future research with clinical implications for targeted neuromodulation.

6.
Brain Connect ; 12(3): 210-222, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34128394

RESUMO

Aim: This investigation aims to advance the understanding of neural dynamics that underlies live and natural interactions during spoken dialogue between two individuals. Introduction: The underlying hypothesis is that functional connectivity between canonical speech areas in the human brain will be modulated by social interaction. Methods: Granger causality was applied to compare directional connectivity across Broca's and Wernicke's areas during verbal conditions consisting of interactive and noninteractive communication. Thirty-three pairs of healthy adult participants alternately talked and listened to each other while performing an object naming and description task that was either interactive or not during hyperscanning with functional near-infrared spectroscopy (fNIRS). In the noninteractive condition, the speaker named and described a picture-object without reference to the partner's description. In the interactive condition, the speaker performed the same task but included an interactive response about the preceding comments of the partner. Causality measures of hemodynamic responses from Broca's and Wernicke's areas were compared between real, surrogate, and shuffled trials within dyads. Results: The interactive communication was characterized by bidirectional connectivity between Wernicke's and Broca's areas of the listener's brain. Whereas this connectivity was unidirectional in the speaker's brain. In the case of the noninteractive condition, both speaker's and listener's brains showed unidirectional top-down (Broca's area to Wernicke's area) connectivity. Conclusion: Together, directional connectivity as determined by Granger analysis reveals bidirectional flow of neuronal information during dynamic two-person verbal interaction for processes that are active during listening (reception) and not during talking (production). Findings are consistent with prior contrast findings (general linear model) showing neural modulation of the receptive language system associated with Wernicke's area during a two-person live interaction. Impact statement The neural dynamics that underlies real-life social interactions is an emergent topic of interest. Dynamically coupled cross-brain neural mechanisms between interacting partners during verbal dialogue have been shown within Wernicke's area. However, it is not known how within-brain long-range neural mechanisms operate during these live social functions. Using Granger causality analysis, we show bidirectional neural activity between Broca's and Wernicke's areas during interactive dialogue compared with a noninteractive control task showing only unidirectional activity. Findings are consistent with an Interactive Brain Model where long-range neural mechanisms process interactive processes associated with rapid and spontaneous spoken social cues.


Assuntos
Área de Broca , Área de Wernicke , Adulto , Encéfalo , Mapeamento Encefálico , Humanos , Idioma
7.
Neurophotonics ; 8(1): 015004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33598505

RESUMO

Significance: With the increasing popularity of functional near-infrared spectroscopy (fNIRS), the need to determine localization of the source and nature of the signals has grown. Aim: We compare strategies for removal of non-neural signals for a finger-thumb tapping task, which shows responses in contralateral motor cortex and a visual checkerboard viewing task that produces activity within the occipital lobe. Approach: We compare temporal regression strategies using short-channel separation to a spatial principal component (PC) filter that removes global signals present in all channels. For short-channel temporal regression, we compare non-neural signal removal using first and combined first and second PCs from a broad distribution of short channels to limited distribution on the forehead. Results: Temporal regression of non-neural information from broadly distributed short channels did not differ from forehead-only distribution. Spatial PC filtering provides results similar to short-channel separation using the temporal domain. Utilizing both first and second PCs from short channels removes additional non-neural information. Conclusions: We conclude that short-channel information in the temporal domain and spatial domain regression filtering methods remove similar non-neural components represented in scalp hemodynamics from fNIRS signals and that either technique is sufficient to remove non-neural components.

8.
Neuroimage ; 226: 117572, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221448

RESUMO

Pairs of participants mutually communicated (or not) biographical information to each other. By combining simultaneous eye-tracking, face-tracking and functional near-infrared spectroscopy, we examined how this mutual sharing of information modulates social signalling and brain activity. When biographical information was disclosed, participants directed more eye gaze to the face of the partner and presented more facial displays. We also found that spontaneous production and observation of facial displays was associated with activity in the left SMG and right dlPFC/IFG, respectively. Moreover, mutual information-sharing increased activity in bilateral TPJ and left dlPFC, as well as cross-brain synchrony between right TPJ and left dlPFC. This suggests that a complex long-range mechanism is recruited during information-sharing. These multimodal findings support the second-person neuroscience hypothesis, which postulates that communicative interactions activate additional neurocognitive mechanisms to those engaged in non-interactive situations. They further advance our understanding of which neurocognitive mechanisms underlie communicative interactions.


Assuntos
Córtex Cerebral/fisiologia , Expressão Facial , Fixação Ocular , Autorrevelação , Interação Social , Adolescente , Adulto , Revelação , Medições dos Movimentos Oculares , Músculos Faciais , Feminino , Neuroimagem Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho , Lobo Temporal/fisiologia , Adulto Jovem
9.
Soc Cogn Affect Neurosci ; 15(8): 875-887, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32879986

RESUMO

An emerging theoretical framework suggests that neural functions associated with stereotyping and prejudice are associated with frontal lobe networks. Using a novel neuroimaging technique, functional near-infrared spectroscopy (fNIRS), during a face-to-face live communication paradigm, we explore an extension of this model to include live dynamic interactions. Neural activations were compared for dyads of similar and dissimilar socioeconomic backgrounds. The socioeconomic status of each participant was based on education and income levels. Both groups of dyads engaged in pro-social dialectic discourse during acquisition of hemodynamic signals. Post-scan questionnaires confirmed increased anxiety and effort for high-disparity dyads. Consistent with the frontal lobe hypothesis, left dorsolateral pre-frontal cortex (DLPFC), frontopolar area and pars triangularis were more active during speech dialogue in high than in low-disparity groups. Further, frontal lobe signals were more synchronous across brains for high- than low-disparity dyads. Convergence of these behavioral, neuroimaging and neural coupling findings associate left frontal lobe processes with natural pro-social dialogue under 'out-group' conditions and advance both theoretical and technical approaches for further investigation.


Assuntos
Lobo Frontal/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Comportamento Social , Adolescente , Adulto , Ansiedade/diagnóstico por imagem , Ansiedade/psicologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto Jovem
10.
Front Hum Neurosci ; 14: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581746

RESUMO

Eye-to-eye contact is a spontaneous behavior between interacting partners that occurs naturally during social interactions. However, individuals differ with respect to eye gaze behaviors such as frequency of eye-to-eye contacts, and these variations may reflect underlying differences in social behavior in the population. While the use of eye signaling to indicate a shared object of attention in joint attention tasks has been well-studied, the effects of the natural variation in establishing eye contact during joint attention have not been isolated. Here, we investigate this question using a novel two-person joint attention task. Participants were not instructed regarding the use of eye contacts; thus all mutual eye contact events between interacting partners that occurred during the joint attention task were spontaneous and varied with respect to frequency. We predicted that joint attention systems would be modulated by differences in the social behavior across participant pairs, which could be measured by the frequency of eye contact behavior. We used functional near-infrared spectroscopy (fNIRS) hyperscanning and eye-tracking to measure the neural signals associated with joint attention in interacting dyads and to record the number of eye contact events between them. Participants engaged in a social joint attention task in which real partners used eye gaze to direct each other's attention to specific targets. Findings were compared to a non-social joint attention task in which an LED cue directed both partners' attention to the same target. The social joint attention condition showed greater activity in right temporoparietal junction than the non-social condition, replicating prior joint attention results. Eye-contact frequency modulated the joint attention activity, revealing bilateral activity in social and high level visual areas associated with partners who made more eye contact. Additionally, when the number of mutual eye contact events was used to classify each pair as either "high eye contact" or "low eye contact" dyads, cross-brain coherence analysis revealed greater coherence between high eye contact dyads than low eye contact dyads in these same areas. Together, findings suggest that variation in social behavior as measured by eye contact modulates activity in a subunit of the network associated with joint attention.

11.
Neurophotonics ; 7(1): 015010, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32206677

RESUMO

Significance: The expanding field of human social interaction is enabled by functional near-infrared spectroscopy (fNIRS) that acquires hemodynamic signals during live two-person interactions. These advances call for development of methods to quantify interactive processes. Aim: Wavelet coherence analysis has been applied to cross-brain neural coupling. However, fNIRS-specific computations have not been explored. This investigation determines the effects of global mean removal, wavelet equation, and choice of oxyhemoglobin versus deoxyhemoglobin signals. Approach: We compare signals with a known coherence with acquired signals to determine optimal computational approaches. The known coherence was calculated using three visual stimulation sequences of a contrast-reversing checkerboard convolved with the canonical hemodynamic response function. This standard was compared with acquired human fNIRS responses within visual cortex using the same sequences. Results: Observed coherence was consistent with known coherence with highest correlations within the wavelength range between 10 and 20 s. Removal of the global mean improved the correlation irrespective of the specific equation for wavelet coherence, and the oxyhemoglobin signal was associated with a marginal correlation advantage. Conclusions: These findings provide both methodological and computational guidance that enhances the validity and interpretability of wavelet coherence analysis for fNIRS signals acquired during live social interactions.

12.
Front Hum Neurosci ; 14: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116606

RESUMO

Direct eye contact between two individuals is a salient social behavior known to initiate and promote interpersonal interaction. However, the neural processes that underlie these live interactive behaviors and eye-to-eye contact are not well understood. The Dynamic Neural Coupling Hypothesis presents a general theoretical framework proposing that shared interactive behaviors are represented by cross-brain signal coherence. Using functional near-infrared spectroscopy (fNIRS) adapted for hyper scanning, we tested this hypothesis specifically for neural mechanisms associated with eye-to-eye gaze between human participants compared to similar direct eye-gaze at a dynamic video of a face and predicted that the coherence of neural signals between the two participants during reciprocal eye-to-eye contact would be greater than coherence observed during direct eye-gaze at a dynamic video for those signals originating in social and face processing systems. Consistent with this prediction cross-brain coherence was increased for signals within the angular gyrus (AG) during eye-to-eye contact relative to direct eye-gaze at a dynamic face video (p < 0.01). Further, activity in the right temporal-parietal junction (TPJ) was increased in the real eye-to-eye condition (p < 0.05, FDR corrected). Together, these findings advance a functional and mechanistic understanding of the AG and cross-brain neural coupling associated with real-time eye-to-eye contact.

13.
Front Hum Neurosci ; 14: 606397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584223

RESUMO

Although the neural systems that underlie spoken language are well-known, how they adapt to evolving social cues during natural conversations remains an unanswered question. In this work we investigate the neural correlates of face-to-face conversations between two individuals using functional near infrared spectroscopy (fNIRS) and acoustical analyses of concurrent audio recordings. Nineteen pairs of healthy adults engaged in live discussions on two controversial topics where their opinions were either in agreement or disagreement. Participants were matched according to their a priori opinions on these topics as assessed by questionnaire. Acoustic measures of the recorded speech including the fundamental frequency range, median fundamental frequency, syllable rate, and acoustic energy were elevated during disagreement relative to agreement. Consistent with both the a priori opinion ratings and the acoustic findings, neural activity associated with long-range functional networks, rather than the canonical language areas, was also differentiated by the two conditions. Specifically, the frontoparietal system including bilateral dorsolateral prefrontal cortex, left supramarginal gyrus, angular gyrus, and superior temporal gyrus showed increased activity while talking during disagreement. In contrast, talking during agreement was characterized by increased activity in a social and attention network including right supramarginal gyrus, bilateral frontal eye-fields, and left frontopolar regions. Further, these social and visual attention networks were more synchronous across brains during agreement than disagreement. Rather than localized modulation of the canonical language system, these findings are most consistent with a model of distributed and adaptive language-related processes including cross-brain neural coupling that serves dynamic verbal exchanges.

14.
Front Robot AI ; 7: 599581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585574

RESUMO

Robot design to simulate interpersonal social interaction is an active area of research with applications in therapy and companionship. Neural responses to eye-to-eye contact in humans have recently been employed to determine the neural systems that are active during social interactions. Whether eye-contact with a social robot engages the same neural system remains to be seen. Here, we employ a similar approach to compare human-human and human-robot social interactions. We assume that if human-human and human-robot eye-contact elicit similar neural activity in the human, then the perceptual and cognitive processing is also the same for human and robot. That is, the robot is processed similar to the human. However, if neural effects are different, then perceptual and cognitive processing is assumed to be different. In this study neural activity was compared for human-to-human and human-to-robot conditions using near infrared spectroscopy for neural imaging, and a robot (Maki) with eyes that blink and move right and left. Eye-contact was confirmed by eye-tracking for both conditions. Increased neural activity was observed in human social systems including the right temporal parietal junction and the dorsolateral prefrontal cortex during human-human eye contact but not human-robot eye-contact. This suggests that the type of human-robot eye-contact used here is not sufficient to engage the right temporoparietal junction in the human. This study establishes a foundation for future research into human-robot eye-contact to determine how elements of robot design and behavior impact human social processing within this type of interaction and may offer a method for capturing difficult to quantify components of human-robot interaction, such as social engagement.

15.
Sci Rep ; 9(1): 16044, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690744

RESUMO

Understanding how the brain modulates improvisation has been the focus of numerous studies in recent years. Models have suggested regulation of activity between default mode and executive control networks play a role in improvisational execution. Several studies comparing formulaic to improvised sequences support this framework and document increases in activity in medial frontal lobe with decreased activity in the dorsolateral prefrontal cortex (DLPFC). These patterns can be influenced through training and neural responses may differ between in beginner and expert musicians. Our goal was to test the generalizability of this framework and determine similarity in neural activity in the prefrontal cortex during improvisation. Twenty guitarists performed improvised and formulaic sequences in a blues rock format while brain activity was recorded using functional near-infrared spectroscopy. Results indicate similar modulation in DLPFC as seen previously. Specific decreases of activity from left DLPFC in the end compared to beginning or middle of improvised sequences were also found. Despite the range of skills of participants, we also found significant correlation between subjective feelings of improvisational performance and modulation in left DLPFC. Processing of subjective feelings regardless of skill may contribute to neural modulation and may be a factor in understanding neural activity during improvisation.


Assuntos
Criatividade , Música , Córtex Pré-Frontal/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho
16.
Neurophotonics ; 6(4): 045002, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31646152

RESUMO

Face-specific neural processes in the human brain have been localized to multiple anatomical structures and associated with diverse and dynamic social functions. The question of how various face-related systems and functions may be bound together remains an active area of investigation. We hypothesize that face processing may be associated with specific frequency band oscillations that serve to integrate distributed face processing systems. Using a multimodal imaging approach, including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), simultaneous signals were acquired during face and object picture viewing. As expected for face processing, hemodynamic activity in the right occipital face area (OFA) increased during face viewing compared to object viewing, and in a subset of participants, the expected N170 EEG response was observed for faces. Based on recently reported associations between the theta band and visual processing, we hypothesized that increased hemodynamic activity in a face processing area would also be associated with greater theta-band activity originating in the same area. Consistent with our hypothesis, theta-band oscillations were also localized to the right OFA for faces, whereas alpha- and beta-band oscillations were not. Together, these findings suggest that theta-band oscillations originating in the OFA may be part of the distributed face-specific processing mechanism.

17.
Front Hum Neurosci ; 11: 571, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218005

RESUMO

Interpersonal interaction is the essence of human social behavior. However, conventional neuroimaging techniques have tended to focus on social cognition in single individuals rather than on dyads or groups. As a result, relatively little is understood about the neural events that underlie face-to-face interaction. We resolved some of the technical obstacles inherent in studying interaction using a novel imaging modality and aimed to identify neural mechanisms engaged both within and across brains in an ecologically valid instance of interpersonal competition. Functional near-infrared spectroscopy was utilized to simultaneously measure hemodynamic signals representing neural activity in pairs of subjects playing poker against each other (human-human condition) or against computer opponents (human-computer condition). Previous fMRI findings concerning single subjects confirm that neural areas recruited during social cognition paradigms are individually sensitive to human-human and human-computer conditions. However, it is not known whether face-to-face interactions between opponents can extend these findings. We hypothesize distributed effects due to live processing and specific variations in across-brain coherence not observable in single-subject paradigms. Angular gyrus (AG), a component of the temporal-parietal junction (TPJ) previously found to be sensitive to socially relevant cues, was selected as a seed to measure within-brain functional connectivity. Increased connectivity was confirmed between AG and bilateral dorsolateral prefrontal cortex (dlPFC) as well as a complex including the left subcentral area (SCA) and somatosensory cortex (SS) during interaction with a human opponent. These distributed findings were supported by contrast measures that indicated increased activity at the left dlPFC and frontopolar area that partially overlapped with the region showing increased functional connectivity with AG. Across-brain analyses of neural coherence between the players revealed synchrony between dlPFC and supramarginal gyrus (SMG) and SS in addition to synchrony between AG and the fusiform gyrus (FG) and SMG. These findings present the first evidence of a frontal-parietal neural complex including the TPJ, dlPFC, SCA, SS, and FG that is more active during human-to-human social cognition both within brains (functional connectivity) and across brains (across-brain coherence), supporting a model of functional integration of socially and strategically relevant information during live face-to-face competitive behaviors.

18.
Neuroimage ; 157: 314-330, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619652

RESUMO

Human eye-to-eye contact is a primary source of social cues and communication. In spite of the biological significance of this interpersonal interaction, the underlying neural processes are not well-understood. This knowledge gap, in part, reflects limitations of conventional neuroimaging methods, including solitary confinement in the bore of a scanner and minimal tolerance of head movement that constrain investigations of natural, two-person interactions. However, these limitations are substantially resolved by recent technical developments in functional near-infrared spectroscopy (fNIRS), a non-invasive spectral absorbance technique that detects changes in blood oxygen levels in the brain by using surface-mounted optical sensors. Functional NIRS is tolerant of limited head motion and enables simultaneous acquisitions of neural signals from two interacting partners in natural conditions. We employ fNIRS to advance a data-driven theoretical framework for two-person neuroscience motivated by the Interactive Brain Hypothesis which proposes that interpersonal interaction between individuals evokes neural mechanisms not engaged during solo, non-interactive, behaviors. Within this context, two specific hypotheses related to eye-to-eye contact, functional specificity and functional synchrony, were tested. The functional specificity hypothesis proposes that eye-to-eye contact engages specialized, within-brain, neural systems; and the functional synchrony hypothesis proposes that eye-to-eye contact engages specialized, across-brain, neural processors that are synchronized between dyads. Signals acquired during eye-to-eye contact between partners (interactive condition) were compared to signals acquired during mutual gaze at the eyes of a picture-face (non-interactive condition). In accordance with the specificity hypothesis, responses during eye-to-eye contact were greater than eye-to-picture gaze for a left frontal cluster that included pars opercularis (associated with canonical language production functions known as Broca's region), pre- and supplementary motor cortices (associated with articulatory systems), as well as the subcentral area. This frontal cluster was also functionally connected to a cluster located in the left superior temporal gyrus (associated with canonical language receptive functions known as Wernicke's region), primary somatosensory cortex, and the subcentral area. In accordance with the functional synchrony hypothesis, cross-brain coherence during eye-to-eye contact relative to eye-to-picture gaze increased for signals originating within left superior temporal, middle temporal, and supramarginal gyri as well as the pre- and supplementary motor cortices of both interacting brains. These synchronous cross-brain regions are also associated with known language functions, and were partner-specific (i.e., disappeared with randomly assigned partners). Together, both within and across-brain neural correlates of eye-to-eye contact included components of previously established productive and receptive language systems. These findings reveal a left frontal, temporal, and parietal long-range network that mediates neural responses during eye-to-eye contact between dyads, and advance insight into elemental mechanisms of social and interpersonal interactions.


Assuntos
Reconhecimento Facial/fisiologia , Fixação Ocular/fisiologia , Lobo Frontal/fisiologia , Neuroimagem Funcional/métodos , Relações Interpessoais , Lobo Parietal/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Lobo Temporal/fisiologia , Adulto , Olho , Feminino , Humanos , Masculino , Adulto Jovem
19.
PLoS One ; 12(3): e0173525, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278240

RESUMO

The interpretation of social cues is a fundamental function of human social behavior, and resolution of inconsistencies between spoken and gestural cues plays an important role in successful interactions. To gain insight into these underlying neural processes, we compared neural responses in a traditional color/word conflict task and to a gesture/word conflict task to test hypotheses of domain-general and domain-specific conflict resolution. In the gesture task, recorded spoken words ("yes" and "no") were presented simultaneously with video recordings of actors performing one of the following affirmative or negative gestures: thumbs up, thumbs down, head nodding (up and down), or head shaking (side-to-side), thereby generating congruent and incongruent communication stimuli between gesture and words. Participants identified the communicative intent of the gestures as either positive or negative. In the color task, participants were presented the words "red" and "green" in either red or green font and were asked to identify the color of the letters. We observed a classic "Stroop" behavioral interference effect, with participants showing increased response time for incongruent trials relative to congruent ones for both the gesture and color tasks. Hemodynamic signals acquired using functional near-infrared spectroscopy (fNIRS) were increased in the right dorsolateral prefrontal cortex (DLPFC) for incongruent trials relative to congruent trials for both tasks consistent with a common, domain-general mechanism for detecting conflict. However, activity in the left DLPFC and frontal eye fields and the right temporal-parietal junction (TPJ), superior temporal gyrus (STG), supramarginal gyrus (SMG), and primary and auditory association cortices was greater for the gesture task than the color task. Thus, in addition to domain-general conflict processing mechanisms, as suggested by common engagement of right DLPFC, socially specialized neural modules localized to the left DLPFC and right TPJ including adjacent homologous receptive language areas were engaged when processing conflicting communications. These findings contribute to an emerging view of specialization within the TPJ and adjacent areas for interpretation of social cues and indicate a role for the region in processing social conflict.


Assuntos
Conflito Psicológico , Gestos , Idioma , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico , Sinais (Psicologia) , Feminino , Hemodinâmica , Humanos , Relações Interpessoais , Masculino
20.
J Sci Med Sport ; 19(3): 267-271, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25824058

RESUMO

OBJECTIVES: Exer-games and virtual reality offer alternative opportunities to provide neuro-rehabilitation and exercise that are fun. Our goal was to determine how effective they are in achieving motor learning goals and fitness benefits as players gain experience. DESIGN: We employed a repeated measures design to determine changes in physical exertion and engagement with training. METHODS: Fourteen healthy adults trained on the XBOX Kinect video game Dance Central using a skill-based protocol to examine changes in energy expenditure (EE), heart rate (HR), METs, limb movement, game proficiency, and player engagement in initial, post-training, and transfer-testing of a full-body dance exer-game. Data were analyzed using repeated measures analysis of variance, p<0.05. RESULTS: Both EE, HR, and METs increased from initial (EE 4.89±1.35, HR 103±18, METs 4.25±0.72) to post-training (EE 5.92±1.25, HR 110±15, METs 5.05±0.75) and were greatest during transfer-testing (EE 6.34±1.35, HR 115±17, METs 5.42±0.88, p≤0.001). Proficiency, measured by game scores, also increased from initial to post-training and transfer-testing (p≤0.002). Limb movement and player engagement remained unchanged. CONCLUSIONS: It is important to understand whether player physiological and psychophysiological responses change with continued game-play. Although Dance Central involves whole-body movement, physical exertion remained at moderate levels after training. As exer-game and virtual reality systems move from their initial novelty, research about how players react to continued involvement with a game can guide game developers to maintain a freshness through game progression that preserves the participant's attentional focus, minimizes attrition and maintains a prescribed level of energy exertion.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Jogos de Vídeo , Adolescente , Adulto , Fenômenos Biomecânicos , Dança , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Destreza Motora , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...